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ON THE BRAUER GROUP 
OF A PROJECTIVE VARIETY 

BY 

F. VAN OYSTAEYEN AND A. VERSCHOREN * 

ABSTRACT 

This paper presents a direct, torsion-theoretic description of the Brauer group 
of a projective scheme X. If X is a regular projective variety of dimension at 
most two, then Br(X) reduces to the relative Brauer group of the homogeneous 
coordinate ring of X, based on pseudo Azumaya algebras. 

O. Introduction 

In [32] the first author introduced the so-called "graded" Brauer group of a 

graded commutative ring C. It is defined in terms of graded Azumaya algebras 

over C and contains an amount of information on the graded arithmetical 

structure of C. In particular, its relation to the common Brauer group in case C 

is an arithmetically graded ring has been studied in loc. cit. This allows us to 

apply these techniques in case C is the homogeneous coordinate ring of a 

nonsingular projective plane curve. Let us point out that the reason why the 

theory of arithmetically graded rings may be brought to bear on the geometrical 

situation is that the graded ring of quotients of C at a graded prime ideal P in 

Proj(C), say Qf,(C), is a generalized Rees ring in the sense of [31] such that its 

part of degree zero Q~(C)o = Ctp) (the stalk at P of the structure sheaf on the 

curve) is a discrete valuation ring. 

Now, A. Grothendieck introduced and studied the Brauer group of a scheme 

in [12], but, although essentially the same for schemes, we prefer to introduce 

this notion through B. Auslander's definition of the Brauer group of an arbitrary 

ringed space, cf. [3]. According to loc. cit. we thus have to consider locally 

separable sheaves of algebras over an arbitrary ringed space. It appears that the 

Brauer group of an afline scheme Spec(R) coincides with the usual Brauer 

Group of the ring R, in the sense of M. Auslander and O. Goldman, cf. [5]. 

* The second author is supported by N.F.W.O. Grant A2/5. 
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The aim of this paper is to study the Brauer group of Pro j (R)  for a graded 

commutative ring R. Although the results of the first sections will be shown to 

hold for arbitrary rings R, we will be led in a most natural way to restrict 

attention to regular, projective varieties over an arbitrary, not necessarily 

algebraically closed field. Note that the present paper is a revised version of 

[40], where only the normally projective curve case was dealt with. One of the 

techniques which make our methods work is the use of idempotent kernel 

functors, a technique which seems to be missing in most geometrical considera- 

tions. Indeed, if R+ is the graded ideal of R generated by all homogeneous 

elements of strictly positive degree and if o-K+ is the graded kernel functor 

associated with the idempotent filter generated by the powers of the ideal R+, 

then, in a sense, the Brauer group of Pro j (R)  is the Brauer group of R in the 

category of graded o-~.-closed R-modules.  A similar property holds for the 

Brauer group of a not necessarily affine subscheme of an afline scheme Spec(R). 

That this is not as far fetched as it seems may be seen in case R is the 

homogeneous coordinate ring of some projective variety. Actually it turns out 

that the graded localization of R at ~r~+ reduces to the integral closure of R in its 

field of fractions. The main result of this paper deals with regular projective 

varieties. As a consequence of this result we obtain the interesting corollary that 

for regular projective varieties of dimension at most two the Brauer group of the 

variety coincides with the relative graded Brauer group of its homogeneous 

coordinate ring, cf. [41]. 

Finally, both authors would like to express their thanks to Ray Hoobler,  some 

of whose remarks enabled them to produce this revised version of [40]. 

1. Some sheaf theoretical background 

1..1. In this section we will recall some definitions and results, contained in [3]. 

Proofs are omitted, for full information we refer to loc. cit. Throughout  (X, Ox) 

will denote a commutatively ringed space, i.e. X is a topological space and Ox is 

a sheaf of commutative rings on X. The category of sheaves of Ox modules will 

be denoted by Ox-Mod. A sheaf of Ox-modules M is said to be locally 

projective of finite type if M is locally a direct summand of a free sheaf of 

Ox-modules of finite rank, i.e. for every x E X there exists an open neighbor- 

hood U of x and morphisms ~:MIU---~O~IU resp. q:O~[U--~M[U such 

that ~ o ~  is the identity on M[U. Here,  as usually, M[U denotes the 

restriction of M to U. From [3] we recall 
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(1.2) PROPOSITION. For any M E Ox-Mod the following statements are equi- 

valent: 

(1.2.1) M is locally projective of finite type; 

(1.2.2) M is locally of finite type and for all open subsets U of X the functor 

Homo,av (M J U, - )  is exact in Ox I U-Mod; 

(1.2.3) M is finitely presented and for all x E X the Ox.x-module Mx is projective. 
[] 

(1.3) The full subcategory of O×-Mod, consisting of all locally projective 

sheaves of finite type, possesses several nice stability properties. Indeed, if M 

and N are such sheaves of Ox modules, then so are Homox (M, N) and M (~ox N. 

Moreover, there are then canonical isomorphisms 

Homo~ (M, M)~o~ Homox (N, N)-% Endo~ (M ~oxN) 
and 

Homo~ (M, O×) Qo~ M --~ Homo~ (M, M). 

Note also that if M is locally projective of finite type and if N is any presheaf of 

O×-modules then for every x @ X we may find an open neighbourhood U such 

that the canonical morphism M @~xNt U---> M Q o x N I  U is an isomorphism of 

presheaves (where ~)' denotes the tensor-product of presheaves!). 

(1.4) Let us define a natural morphism of sheaves of rings oJ:O×---> 

Homox (M, M) by mapping " a  in Ox to the left multiplication by ~ "  - -  this 

"abus de langage" should be understood locally. The kernel of to is the 

annihilator Annox (M) of M;  if Annox (M) -- 0 then we speak of a faithful sheaf 
of O×-modules. If M is finitely presented, then M is faithful if Mx is a faithful 

O×.x-module for every x E X. Let us denote by W the sheaf I-Iomo~ (M, M), then 
M is a sheaf of W-modules in the obvious way. If M is faithful, locally projective 

and of finite type when viewed as a sheaf of Ox-modules, then it has the same 

properties as a sheaf of W-modules. Note also that if M and N1 have the 

foregoing properties and if N2 is an arbitrary sheaf of Ox-modules, together with 

an isomorphism N2@o×M--~ NI, then N2 is faithful and locally projective of 

finite type. 

(1.5) PROPOSITION. Let (X, Ox) be a scheme and M a sheaf of Ox-modutes, 

then the following properties are equivalent: 

(1.5.1) M is locally projective of finite type; 

(1.5.2) M is locally free of finite rank. 

PROOF. One proves this by reducing to the case of affine schemes Spec(R), 
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when one proves that locally projective sheaves of finite type correspond to 

finitely generated projective R-modules, cf. [3]. [] 

(1.6) To any sheaf of Ox-algebras/`  one associates L ° by putting L " ( U ) =  

(L(U)) ° for any open subset U of X;  the enveloping algebra will be L e = 

L QoL °. Clearly L may be considered as a sheaf of left L ' -modules  and it is 

easily verified that if L is of finite type in Ox-Mod, then L is finitely presented in 
Le-Mod. 

We have the following diagram of monomorphisms: 

Ox ~/ -~ HomL, (L, L) 

L 

where i is the structural morphism for L, T is defined locally by associating to an 

element the right multiplication by that element, and/3 is just the evaluation at 

the identity of / , .  One usually identifies HomL, (L, L )  with its image Z(L) in L. 

We refer to Z (/,) as the center o f / ,  ; whenever 3' is an isomorphism, we say that 

L is a central sheaf of Ox-algebras or simply that L is central over Ox. It is clear 

that a finitely presented L in O×-Mod is central over Ox if and only if Lx is a 

central Ox.~-algebra for every x E X. 

(1.7) Let us define a homomorphism r / : L ' - - ~ H o m o x ( L , / ` )  of sheaves of 
rings "locally by associating to a @ b the morphism x ~ axb. A central sheaf 

of Ox-algebras/ ,  which is locally projective of finite type over Ox is said to be a 

locally separable sheaf of O×-algebras if 77 is an isomorphism. Equivalently a 

sheaf of Ox-algebras L is locally separable if and only if L is finitely presented in 

Ox-Mod and Lx is a central separable Ox.x-algebra for each x E X. We may 

refer to a locally separable sheaf of O× algebras over a scheme X as an Azumaya 

Algebra (in the sense of A. Grothendieck's [12]) in view of (1.5). If M is faithful, 

locally projective of finite type, then Homox(M,M) is locally separable. 

Moreover, if L1 and/ ,2 are locally separable, then so is L1 @o×L2. Finally i f / ,  is 

locally separable over Ox and Ok is a commutative sheaf of Ox- algebras, then 

L @o~ O~ is locally separable over Ok. 

(1.8) Let CI(X, Ox) be the category of locally separable sheaves of central 

Ox-algebras with Ox-algebra morphisms. We have seen that CI(X, Ox) is closed 

under tensor-products over Ox. Let C~(X, Ox) be the full subcategory of 
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C,(X, Ox) consisting of those objects isomorphic as sheaves of algebras to 

sheaves of the form Nomox (M, M) for some faithful locally projective sheaf M 
of finite type. From the above it is clear that C'I(X, Ox) is closed under 
tensor-products too. Let us now say that L~ and L2 in C~(X, Ox) are equivalent 

(L~-L2)  if and only if there exist W~,W2~C~(X,O×) such that 

Lz@o~W~---~L2@oxW2. The set of equivalence classes B(X, O x ) f o r  this 

relation may be endowed with the structure of an abelian group through the 

multiplication induced by taking tensor-products over Ox, such that the class of 
L ° is the inverse of the class of L and where the class of Ox is the unit element. 

Obviously for any L E Cz(X, Ox ) we have L E C'~(X, Ox) if and only if L ~ Ox. 
The group B(X, Ox) is called the Brauer group of the ringed space (X, Ox). 

(1.9) PROPOSmON. Let Spec(R) be an affine scheme with structure sheaf OR 

and let Br(R) be the Brauer group of R in the sense of M. Auslander and O. 

Goldman, then there is a canonical isomorphism B (Spec(R), OR ) ~  Br(R ). [] 

The purpose of this paper is to provide a similar description of the Brauer 

group of a projective scheme, at least in some special cases. 

2. The projective case 

(2.1) Throughout R = ( ~ = o R ,  denotes a commutative, positively graded 

ring with unit. Put Pro j (R)= {P graded prime ideal of R ;  P 2~ R+}, where 

R+ = ( ~ : z R , .  To any graded ideal I of R associate V+(1)={PEProj(R); 
I ~  P}, and the Zariski topology on Proj(R) is defined by taking the X+(I)= 
P r o j ( R ) - V + ( I )  as open subsets. If Qg(R) is the graded ring obtained by 

localizing at the graded torsion theory described by the filter of ideals generated 

by the powers of I (cf. [21], [34], details on graded localization), then we may 

construct a sheaf of graded algebras O~ on Proj(R) by putting F(X.(I), 0 ~ ) =  
QI(R). The stalk of O~ at P E Proj(R) is given by O~.p = Q~_p(R) (cf. [14]) 
where Q~_p(R) is obtained from R by inverting the homogeneous elements in 
R - P, i.e. in the multiplicative system h(R - P). We call O~ the graded structure 

sheaf on Proj(R). The structure sheaf on Proj(R) is then just/~ --- (O~)o defined 

by F(X+(I),/~) = (Q~(R))0, the part of degree zero of QI(R). In a similar way 

one constructs O;I and /V/ for arbitrary graded R-modules M. 

(2.2) Recall that for any integer n one defines the shift functor T, by its action 

on an R-module M given by (TnM)p = Mn÷p for all p E Z. Let us denote by 

O+R(n) resp. /~(n) the sheaf of O~-modules resp. /~-modules associated with 

T,R in the above way. If M is a sheaf of/~-modules, then we write M(n)  for 
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M @R/~ (n). We define a left exact functor F, from sheaves of /~-modules to 

graded R-modules by putting F , ( M ) =  0 - F ( P r o j ( R ) , M ( n ) ) .  Recall further 

that for any pair of graded R-modules M, N we define HOMR (M, N) to be the 

graded R-module generated by the graded R-linear morphisms f : M - - >  N of 

arbitrary degree p, i.e. having the property that f(M,,)C N,,+p for any m E Z. 
The category R-gr has as objects graded R-modules and as morphisms graded 

R-linear morphisms of degree 0, i.e. which are degree-preserving. So 

HomR_g,(M, N) = HOMR (M, N)o. Assume from now on that R is generated as 

an R,-algebra by a finite number of elements of degree 1. In geometrical 
applications we will even have that R~ is a field and R is noetherian. Let us recall 

some well-known facts in the following 

(2.3) PROPOSmON. 
(2.3.1) For any quasicoherent sheaf of l~-modules the canonical morphism 

/3 : (F,(M))--% M is an isomorphism; 

(2.3.2) every quasicoherent sheaf of t~-modules (of finite type) M is of the form 

l(,l for some (finitely generated) graded R-module  M;  
(2.3.3) if M and N are graded R -modules, with M finitely presented, then there 

is a canonical isomorphism p. : (HOMR (M, N))---% Home (/~7/, ~):  
(2.3.4) for any pair of graded R -modules M, N there is a canonical isomorphism 

h : ] ~ I ( ~ I ~ - ~ ( M ( ~ R N f ;  

(2.3.5) if M is a graded R-module  then f4 = 0 if and only if for all m E M and 

r E R, ,  n > 1, we may find p E N  such that rPm = 0; 
(2.3.6) for any graded R-module  M we have ( T , M ) -  =/~/(n); 

(2.3.7) let Ro be a finitely generated algebra over a field and let M be a finitely 

generated graded R -module ; for large enough positive integers d E N the canoni- 

cal map a : M--~ F,(,~/) induces an isomorphism ad :Aid--~ F(X, ~t(d)). 

(2.4) LEMMA. Let S be a commutative graded ring such that SSI = S. The 

Grothendieck categories S-gr and So-mod are naturally equivalent and this 

equivalence is given by the functors ( - )o : S-gr---~ So-mod, M ~ Mo, and 

Sso@-: So-mod~ S-gr, N ~ Ss,@ N. 

PROOF. First note that the condition SS~ = S entails S.Mm = M,+,, for every 

M E R-gr, n, m E Z. Consider the graded module Ss,@ S,, for some n E Z, the 

graduation being given by (S~o@ S.),, = S,,,so@S,. The map t~:SsoQS, ~ S ( n )  
given by s @ r, ~, sr. is graded of degree zero. Moreover ~O is surjective because 

S ( n )  is as a graded left S-module generated by S(n)0 = R,. Now Ker¢  is a 

graded S-module, i.e. generated by its part of degree zero. The exact sequence 

in S-gr: 
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0--~ Ker ~ --~ S s, Q S, --~ S ( n ) --~ 0 

yields an exact sequence in So-rood: 

0---~ (Ker qJ)0--~ S, ~ S, --~0 

by taking parts of degree zero. Consequently: (Ker qQo = 0 and thus Ker~b = 0. 

Therefore Ss,(~ Sn -~ S(n) in S-gr and thus S,,.s,~)S, ~ S,÷m in So-rood. From 

S_,so(~S, "~ S,,~ S , s , ~ S - ,  it follows that S, is an invertible So-module hence 

finitely generated projective. This entails, e.g., that S is flat as an S,~-module. 

Finally, for every M ~ S-gr we have an exact sequence in S-gr: 

O---~ K--~ Mo ~,(~ S--~ M - o  O, 

and as before we deduce that Ko = 0, hence K = 0. The statements of the lemma 

are now easily verified. 

(2.5) PROPOSITION. Let M and N be graded R-modules with M finitely 
presented ; if we write E for HOMR (M, N), then there is a canonical isomorphism 

+.._._~ + /z : OE HOMo~(OM,O~). 

PROOF. Recall that HOMo; , (O~,O~)  is defined by putting for each open 

subset U of X 

F(U, HOMo;~(O+M, 0~))= HOMo~Jv(O+MI U, O+NI U), 

where, again, for arbitrary sheaves of graded modules M, N over a sheaf of 

graded rings R we define HOMR (M, N) to consist of all "compat ible"  families 

{ftJ: U open in X} where f~j E HOM,(v)(M(U),N(U)).  
Now, if f ~ Rd, we define a morphism /zr, p :O~(HOMR(M,N)p-o  

(I-IOMo~(R)(Q~(M), O~(N)), : ulf°--~(xlf'--~u(x)/f '+"), where u E 

HOMR (M, N),+p. If e E Rd, then we obtain a commutative diagram: 

Q~(HOMR (M, N)) ~' , HOMo~,R,(Q~(M), Q~(N)) 

O~I(HOMR (M,N)) ~, , HOMo~r(R)(Q~r(M), O~r(N)) 

where /z  r = Op/zr,  p, and/zer = ~]~p/zei,,. This permits us to glue the /z  I together 

over Pro j (R)  and we thus obtain the desired morphism /x:O~---~ 

HOMo~(O~,  O ;  0. To check tha t /z  is an isomorphism is easy; actually one can 

follow the lines of (2.5.13) in [12]. []  
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NOTE. On the structure sheaf level this implies that for finitely presented M we 

have that Homa (/~,/Q) = (HOMo~ (O~,  O~)~,. 

(2.6) LEMMA. Let R be positively graded and generated by R~ over Ro, then]or 

each P ~ Proj (R)  we have Qge( R )= ( O~e( R ))o[x, x 1] ~_ ( Q~( R )~,[ T, T-'I, where 
x may be found in Q~,(R)~ and where T is an indeterminate. 

PROOF. Our assumptions yield that R ~ .C P, for otherwise R 'z' C P for all n, so 

R+ C P, contradicting the choice of P;  it follows that we may find x E R1 - P, i.e. 

£ is invertible in Q~(R),  where ~ is the image of x in Q~(R).  If z E (Q~(R)),  
for some positive integer n, then (~)-"z E (Q~(R))o, i.e. z E (Q~e(R))o(~)". Now, 

if we had an algebraic relation over Q~(R )o, then the fact that deg £ = 1 and that 

.f is invertible would lead to a contradiction. [] 

(2.7) LEMMA. I f  M is a locally projective sheaf of l~ -modules o]: finite type then 

there exists a graded R -module M of finite presentation such that M = ]~I. 

PROOF. We already know that M = N" for some finitely generated graded 

R-module  N. Consider a free graded R-module  F, of finite rank and an exact 

sequence of graded R-modules  0-~  K--~ F,--~ N--* 0. This sequence leads to an 

exact sequence 0--~/~--~ F~--~ N = M--~ 0 in /~-Mod.  Since M is locally projec- 

tive of finite type we know that for each P E P r o j ( R )  there is an open 

neighbourhood U such that the induced exact sequence 0---~/(IU---~ 

Ft [ U--~ M [ U ~ 0 splits. It follows that / (  I U is a direct summand of a free 

sheaf o f /~  [ U-modules of finite rank. Consequent ly , /~  is locally projective of 

finite type over/~. Let {fa ; h E L } be a set of homogeneous generators for K. For 

any finite subset H of L, let K ,  be the graded R-submodule of K generated by 

{/~'h E H}. Clearly K = l i m , K ,  and / (  = l im,/(H. 

Since Proj (R)  is quasi compact and K has finite type, there exists a finite 

H C L such that /~ = / ~ , .  Consider the following exact diagram in R-gr: 

0 ) K ,  )Fx >M ~0 

l 1 
0 > K  ~ F ~  ~ N  

The map ~o derived from K ,  C K induces a morphism 

>0 

~ : Ifl--~ IQ = M. At 

P E Proj (R)  the morphism qSp reduces to Og(¢)o: O~(M)o-~ O~(N)o. But from 

/ ( ,  =/~, it follows that Q~(K, ) ,  = Q~(K)o. 
Moreover, (Q~.( - ))o = ( - )¢p) is an exact functor, because it is the composition 



Vol. 42, 1982 BRAUER GROUP OF PROJECTIVE CURVE 45 

of exact functors, implying that (Qf(tp))o is an isomorphism. Now ffp is an 

isomorphism for each P E Proj(R ), therefore ~ is an isomorphism. [] 

(2.8) PROPOSITION. Let M, N be locally projective sheaves of finite type over 1~ ; 

put M + = M (~RO+R resp. N ~ = N @a 0;~, then 

HomR (M, N)®,~ O~ = HOMo~(M+,N+). 

PROOF. There is a canonical sheaf morphism 

A : Hom,~ (M, N)@a O~ = HOMo;~(M +, S+), 

hence it will be sufficient to check that for each P E Proj(R) the local morphism 

Ae at P is an isomorphism. From (2.8) we retain that M = AT/, N =/Q for M and 

N finitely presented over R. Now, using the notation ( - )w) for O~,( - ~1 in order 

not to overload notations, we have 

(nom~ (M, N ) ® ~  O~)~ = (nomR (M, ~))~ ® . ~ O ~  ~ 

= (HOM.  (M, N)-)p @R,,, Q~(R ) 

= (HOMR (M, N))w, ~R(,,, Q~(R ). 

On the other hand, since M is finitely presented, we have 

(Homa (M, N) ¢~)a O ~)p = Hom a,. (Me, Np) @R,,,, O ~,(R ) 

= Hom,,,,(M,e). Nw,)~)R,~, Of(R  ) 

which is equal to Homo~R)(Mw)@R~ , Of(R) ,  N~p)@R~, O ~(R)), since O f ( M )  
has finite presentation over Of(R) ,  hence to Homo.~R)(Q~(M),Q~(N)) = 

HOMo~R)(O~(M), Q~(N)), by (2.4). the last equality holding because O f ( M )  is 
a O~.(R)-module of finite type, cf. [12]. But, the same argument yields that 

O f ( M )  = (1¢/~)a O;0e and similarly for Of(N) ,  which finally yields that 

(HomR (M, N) @~ O ~)p = HOMo~R)(M~,, N~) 

= (HOMo~,(M +, N+))p. 

(2.9) NOTE. Choose a finite presentation for M, say F22-> F1-+ M--> 0. Let 

¢r L denote the kernel functor (cf. [11], [37]) associated to the filter of ideals 

generated by R+ and let Q L  be the associated graded localization functor (cf. 

[23]). 

Since R+ is generated by a finite number of elements of degree 1 it follows that 

o-R÷ is of finite type and Q L  commutes with direct sums. It follows easily that 
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Coker Q~.(t#) is finitely presented in Q~R+(R)-gr, whilst AT/= M. As usual, if tr 

is a kernel functor in R-mod or R-gr, then M is said to be tr-finitely generated 
resp. or-finitely presented if M is ~-torsion free and there exists N C M which is 

finitely generated resp. presented and such that M / N  is tr-torsion. 

(2.10) COROLLARY. If  M is locally projective of finite type over I~, then F . ( M )  

is o'~+-finitely presented. 

PROOF. This follows from the foregoing, the fact that M = F . ( M ) -  and the 

property that o-~+ = inf{o-~; P E Proj(R)}. [] 

(2.11) PROPOSmON. For any graded R -module M we have O ~+(M) = F,  (/~7/). 

PROOF. Consider the following commutative diagram of graded R-modules 

M ) O~+(M) 

r , (M)  , r , (OL(M)-)  
r,(i) 

It is easily verified that F,(f) is completely determined by L i.e. F ,  (/") = q~ is the 

unique map making the above diagram into a commutative one. Put N = 

O L ( M ) ,  then note first that O~ = OL. Indeed the localizing morphism j induces 

a morphism O,:O~---->Og in the usual way. For P E P r o j ( R ) ,  the local 

morphism O + + j,p : 0 +M.~ 0 N.e reduces to O ~(j) : O ~(M) ~ O ~(N). Since R + E P, 
it follows that o-~+~o-~,, hence Q~,(N)= Q"e(M) and Qf,(j) is the identity. 

Consequently O7 is the identity too. From O~ = O~ it follows that hT/= ]~/, 

hence F , (  D is actually that identity on F,(/~/). For any K E R-gr, the global 

sections of O~: are given by lim HOMR (R ~, K)--% Q~+(K). Since it is also clear .--) 

that + - + O ~ -  Or.(M~, we thus obtain a canonical morphism 

y : F ,  (hT/)--, F(Proj(R ), O ~.(~)) = F(Proj(R ), O~) = Q ~+(M). 

Consider the following two commutative diagrams in R-gr: 

M , F,( /( /)  M ] > Q~+(M) 

Q~÷(M) F, (AT/) 

Now (/3y)~ = / 3 ( y a ) = / 3 j  = a, hence fly = lr.(M), because there is only one 

extension F,  (/'-) ofj .  Next, (y/3)j = y(/3j) = ya  = j, hence yfl = 1N since 1N is the 
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unique morphism N---~ N extending the identity on j (M).  It follows that 

F , ( / V / )  = Q ~ ( M ) .  [] 

(2.12) COROLLARY. Let A be any commutative ring and X = P ~ , =  

Proj(A [Xo, • • ", X, ]), then F. (O×) = A [Xo, • •., X, ]. 

PROOF. One easily sees that for R = A [Xo,"  ",X.] we have Q ~ . ( R ) =  R. 
[] 

The following series of lemmas aims to give a characterization of locally 

projective sheaves of /~-modules of finite type. 

(2.13) LEMMA. Let R be a graded ring such that RR~ = R ; if M is a graded 

R-module with the property that Mo is a finitely generated Ro-module, then M is a 

finitely generated projective R-module. 

PROOF. This follows immediately from (2.4). [] 

(2.14) COROLLARY (2.14.1). Let R be positively graded and generated by R~ 

over R,,; if M ~ R-gr and P ~ Proj(R) are such that M~e) is a finitely generated 
projective R~p)-module, then O~(M) is finitely generated and projective over 
Q~(R). 

(2.14.2) I f  M is locally projective of finite type over 1~, then for each P 
Proj(R ), we have that Q ~p(M) is a finitely generated projective Q ~p(R )-module. [] 

(2.15) LEMMA. Let R be any positively graded ring and let u : M--> N be in 

HOMR (M, N) for some graded R-modules M and N. Let P E Proj(R), then 

(2.15.1) if N is finitely generated and Q~e(u): Qge(M)---> Q~p(N) is surjective 
then we can find f E h (R)  such that P E X+(f) and Q~(u) : Q~(M)--> Q~(N) is 
surjective ; 

(2.15.2) if M is finitely generated and N is finitely presented and if 
Q~(u) : Qgp(M)--> Qge(N) is bijective, then we may find f ~ h (R  ) with P E X+(f) 
and such that Q~(u): Q~(M)--~ Q~(N) is bijective; 

(2.15.3) if N is finitely presented and Q ~,( R ) then there exists f E h ( R - P) such 
that Q ~ N ) is free over Q ~ ( R ). [] 

(2.16) Let us call a graded R-module M a tr~.-quasi projective module if 

Q~(M) is a projective Q~(R)-module for all P E Proj(R). Using (2.16) and 

inspiring oneself on the affine case, one would be tempted to expect tr~.- 

quasiprojectivity to imply o-~. projectivity in the following sense. Let or be an 

arbitrary kernel functor and N an R-module (you may take everything to be 

graded, if you wish), then N is said to be a-projective if for each surjective map 
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~" : M~ ~ M 2  between g-torsion free R-modules  and each map f : N ~ M2 we 
may find N~ C N with N/N,  being o--torsion and f, :Nz---~ M, making the 

following diagram commutative: 

0 ~Nj ~ N  

f, f 

M ~r ~ M2 , 0  

Now, using o-~.-quasiprojectivity, it is only possible to deduce the following 

weaker version of tr~.-projectivity: if ~ ' : M ~  M2 is a surjective morphism 

between o'-torsion free R-modules  and if for an R-module  M we let 

HomR (M, ~') : HomR (M, M~)---~ HomR (M, M2) denote the canonical morphism, 

then for each f E HomR (M, M2) we may find a positive integer n such that 
R 7-f C !m Homn (M, 7r). Nevertheless, we have the following 

(2.17) PROPOSITION. Let M be a sheaf I~-module, where R is a positively 
graded ring generated by R ~ over Ro, then the following statements are equivalent: 

(2.17.1) F , ( M )  is a graded try-finitely presented tr~+-quasiprojective Q ~ ( R  )- 

module ; 
(2.17.2) M is locally projective of finite type. 

PROOF. (1) ~ (2). Pick a graded finitely presented M C F , ( M )  such that 

F,  (M) /M is o-~+-torsion. Obviously AT/is finitely presented over (Q~+(R))- = 1~ 
and M = 37/since Q ~,(F, (M) /M)  = 0 for all P E Proj(R ). Moreover, Q ~,(F, (M)) 

is projective over O~(R),  hence Mp = Oge(F,(M)) ,=F,(M)tp) is  /~e = Rtp~- 
projective by the foregoing. Thus by (1.2) it follows that M is locally projective 

of finite type. 
(2) ~ (1). This is an easy consequence of (2.10) and (2.14). [] 

Let us now look at locally separable sheaves of algebras over Proj(R).  We will 

start with the following lemma, which we will prove in full generality for later 

u s e .  

(2.18) PROPOSmON. Let L be any R-algebra with R contained in the center of 

L. Consider a family of kernel functors {tr~ ; a E A } in R -mod, such that each o-~ 
has the property that Q~. (L ) is a ring with Z(Q~ a (R )), then if tr = inf{cr~ ; a E A } 

we have that Q, (L ) is a ring with center Q,  (R ). 

PROOF. Although the result holds for any ring, we will only prove this in case 

R is a domain. One easily checks that Q~(L) is a ring and that Q~(Z(L) )C  
Z(Q,~(L)). Consider the following diagram of ring homomorphisms 
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Q~(R) 

Z(Q,~(L)) 

Q,,(L) jo,,. 

> Q~,o(R 

, O~o(Z(O~(L)))  

, O~o(L) 

Here,  R C Z ( L )  yields O , ( R ) C Q , ( Z ( L ) ) C Z ( O ~ ( L ) )  and j,.L maps 

Z(Q~ (K)) into Z(Q~o (L)) = O,o (R). Moreover  O~. (Z(Q~ (L))) C 

Z(Q¢o(Q¢(L) ) )=Z(O~o(L) )= Q~o(R). For each a we obtain O,o(Z(O,r)) = 

Q¢~ (O¢ (R)). Consequently, Z ( O ,  (L))/O¢ (R)  is a ~r,-torsion R-module  for 

all a C A  hence also a o--torsion R-module.  But then Z(O, , (L) )C 

Q~(Z(Q~(L ))) = Oo(O~(R ))= O,, (R), i.e. Z(Q~(L  ))= Q,,(R ). [] 

(2.19) COROLLARY (of the proof). The analogous graded statement is valid 

too. []  

Assume again that R is a positively graded domain generated by a finite 

number of elements of degree 1 over Ro. 

(2.20) LEMMA. Let S be a graded R-algebra with the property that SS~ = S and 

consider a graded S-algebra A ; if Z(Ao) = S,,, then Z ( A  ) = S. 

PROOF. If z E Z ( A . )  and a E A,,  put b = az, then Sb = SS nb = 0, therefore 

Z(A,,) = Z ( A  ~,. If y ~ Z ( A  )~, then Sy = SS_~y C S Z ( A  ~,, hence Sy C SS,, = S 

and we find that indeed Z ( A  ) = S. [] 

(2.21) COROLLARY. If for some graded R-algebra L we know that i is a 

central sheaf of t~-algebras, then OL is a central sheaf of O~-algebras. 

(2.22) LEMMA. Let S be a graded R-algebra which is flat as an So-module and 

which has the property that SS~ = S. A graded S-algebra A which has the property 

that Ao is an Azumaya algebra over S, is a graded Azumaya algebra over S. 

PROOF. We may apply (2.4) and (2.13) to derive that A is S-algebra 

isomorphic to Ao @s, S. It follows that A is a graded Azumaya algebra over S. 
[] 

(2.23) COROLLARY. If for some graded R-algebra L we have that L is a locally 

separable sheaf of I~-algebras, then for each P E Proj (R)  the algebra O~(L ) is 

central separable over O ~( R ). [] 

(2.24) From (2.19) it follows from each finitely presented central sheaf of 
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/~-algebras L over Proj(R) that F.  (L) is a graded central F,(/~)-algebra. By our 

assumptions on R it is clear that R is noetherian if and only if Ro is noetherian. 

Let us assume this from here on, then any sheaf of /~-modules  M which is of 

finite type is of the form /~/ for some graded R-module M which is finitely 

presented and (rR.-torsion free. Indeed, M =/V for some N E R-gr which is of 

finite type, choose M = N/o~gR.N, then M is finitely generated, hence finitely 

presented and obviously M is a~R.-torsion free. It is clear that M = .~Y/. 

(2.25) LEMMA. Let L be a graded (r~.-quasiprojective, (r~.-torsion free R -  

module of finite presentation and let L = i ,  then 

Hom,..(R)(F. (L), F.  (L)) = F .  (Homa (L, L )). 

PROOF. It is clear that L is cr~+-flat in the sense of [42]. Indeed, since R is 

commutati~ve we only have to verify that if i : M ' ~ M  is a monomorphism 

of graded R-modules, then Ker(L @R i) is (r~+-torsion, but this follows im- 

mediately from the fact that L is tr~+-quasiprojective, o-~+ = 

inf{o'~;P E Proj(R)}, and the fact that localization at multiplicative 

systems commutes with tensor-products. From loc. cit. it then follows that 

HOMo~.tR~(Q~÷(L), Q~ . (L ) )  = HOM~ (Q~. (L) ,  Q~ . (L ) )  is ~r~.-closed. Let us 

now first show that HOMoL(Q~R.(L) ,  Q~R.(L))= Q[ . (HOMg (L, L)). 

From HOMR (Q[÷(L), O ~ . ( L ) ) =  HOMR (L, Q~ . (L ) )  it follows that this as- 

sertion will be established if we are able to prove that in the exact sequence 

0 ~ K ~ HOMR(L ,L)  ~ H O M R ( L , Q ~ . ( L ) )  ~ T ~ 0 

both K and T are tr~.-torsion. First suppose that ~o : L --~ L is in Ker A = K. Let 

us write j : L --~ Q~R.(L) for the canonical localization morphism, then q~ E K 
yields j~ = 0; i.e. ~ (L)  C Ker j  = o-~.L. Since L is finitely generated we may find 

a positive integer n E N  such "that R~.~o(L)=0, i.e. R ~ o = 0  and 

~o E cr~÷HOMR (L, L), proving that K is tr~.-torsion. Next, in order to prove 

that T is tr~.-torsion, it suffices to verify that for any ~o : L --~ Q ~ . ( L )  there is an 

L~ C L with L/L~ being ~r~.-torsion and a morphism q~t: L~--~ L such that the 

following diagram is commutative; 

LI ~ L 

L , QgR÷(L) i 

Now, if L ' =  ~0(L)C Q~.(L),  then, as L '  is finitely generated, we may find a 
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positive integer n E N  such that R"~L'C L. Put Lz = R+L' and ~1 = ~ IL~, then 

( L ,  ~ )  satisfies our requirements. 

To finish the proof, observe that 

Hom,-.(R)(F, (L), F.  (L)) = HOM oL(R)(Q ~+(L), Q ~+(L)) 

= Q~ . (HOMa (L, L)) = F,((HOMR (L, L))- )  

= F,  (HomR (L, L )). 

The last equality holds because of (2.3.3). [] 

(2.26) COROLLARY. If L is a sheaf of R-modules which is locally finite then 
Homr.o~)(F,(L), F,  (L)) = F,(HomR (L,L)). [] 

(2.27) LEMMA. Let L and L'  be sheaves o[ I~-modules, then 

r,(L ®RL)= oL(r,(L)®,..,~,r,(L))= r,((r,(L)®,-.,R,r,(L))-). [] 

Let us call a graded R-algebra A a o'ga+-quasi Azumaya algebra if it is 

o-~+-closed, ar~+-quasi projective and o-~+-finitely generated, if Z ( A ) =  Q~+(R) 
and if the canonical map A e = A @RA"---* HOMR (A, A )  induces an isomor- 

phism Q~+(A e)---GHOMR (A, A).  Then we have: 

(2.28) PROPOSITION. There is a bijective correspondence between locally 
separable sheaves of l~-algebras on Proj (R)  and graded crga+-quasi Azumaya 
algebra over R. [] 

Using these ~ + - A z u m a y a  algebras, it is now possible to introduce a notion of 

"relat ive" graded Brauer group. However,  as this would lead us too far, we will 

not go into the details here. Moreover,  in the next section we will show that in 

the case of a normal curve this relative Brauer group is just the usual Brauer  

group B e of the homogeneous coordinate ring of the curve under consideration, 

cf. [411. 

3. Normal varieties 

(3.1) Let us now turn to the geometrical situation: we will consider normal 

schemes. Recall that a scheme X is normal if its local rings are integrally closed 

domains. If X is affine then it is normal exactly when its atfine coordinate ring is 

integrally closed. If X is one dimensional, then X is normal exactly when it is 

nonsingular. Let C be a commuative ring and X a closed subscheme of P~-, let 

S[X] be the ring C[Xo, . . . ,X ,] / I  where I = F . ( Jx) ,  where Jx is the sheaf of 
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ideals defining X. We call X projectively normal (for the given embedding) if 

S[X] is integrally closed. For these notions and the following result we refer to 

Hartshorne I15]. 

(3.2) PROPOSITION. Let k be a field and A a finitely generated k-algebra ; if X 

is a connected, normal subscheme of P~, then 
(3.2.1) S ' =  ~D,~,F(X,O×(n)) is the integral closure of the domain S[X]; 

(3.2.2) for d E N  large enough, we have S[X]~ = S'~; 
(3.2.3) an arbitrary closed subscheme X C P~A is projectively normal if and only 

if X is normal and for every n ~ N the natural map F(P~,, Op~ (n))--~ F(X, Ox (n)) 

is surjective. [] 

A closed subscheme Y of PT, is a complete intersection if the homogeneous 

ideal I of Y in S = k [ X o , . . . , X n ]  may be generated by r=codim(Y,P'k) 
elements. It is straightforward to establish that any normal complete intersection 

of dimension ~ 1 in P~, is also projectively normal. 

(3.3) LEMMA. Let R be generated by a finite number of elements of degree 1 
over Ro; if R is a domain then every homogeneous element of non-negative degree 

in Q~R+(R ) is integral over R. 

PROOF. Let { fo ," ' , f , }C Rz generate R as an Ro-algebra. Pick f ~  Q~R+(R) 
homogeneous of degree d ~ 0 ,  then for some n @N we have R~f C R. In 

particular RTfC R,+u; but our assumptions imply R,+d --R7 ÷u, so we obtain 

RTfzC RT÷df C R?+2u. Consequently, RTf2C R for all s EN.  In particular 

fgf~ C R, hence R [f] C fo"R. Since fg"R is a noetherian R-module,  it follows 

that R [f] is finitely generated, hence f is integral over R. [] 

(3.4) COROLLARY. Under the foregoing assumptions, if Ro is a field, then so is 
(Q~.(R)), = F(Proj(R ),/~ ). 

PROOF. Pick O# x @ (Q*R+(R))o; then a is integral over the field R0 and 

contained in a domain, i.e. x is invertible. [] 

(3.5) COROLLARY. Let R be an affine graded domain over a field k, then 

Q~+(R) is positively graded in Pro j (R)~  {0}. 

PROOF. By assumption R is of the form k[Xo,. • ", X,]/I  where I is a graded 

prime ideal of k[Xo, . ' . ,X , ] .  Suppose we may find O ~ r ~ Q ~ + ( R ) - ,  with 

n > 0 ;  since R , ~ 0  we may pick a nonzero f in R, and so f rEQ~. (R)o  is 

invertible in Q~+(R~, by (3.4), hence r is invertible in Q~÷(R). For arbitrary 

r 'E Q~.(R)m we may multiply r' by r q for some q large enough such that 
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rqr'E Q~+(R) p for some p >0 .  Since rqr'~O the foregoing argument yields 

that rqr ' is invertible in Q~+(R) and therefore r' is invertible in Q~.(R). 
Consequently Q~R.(R) = Q~(R) for all P E Proj(R), meaning that Proj(R) = 

{0}. This situation having been excluded, this proves the assertion. [] 

(3.6) COROLLARY. If R is the homogeneous coordinate ring of a connected 

normal projective k-variety, then Q~+(R ) is the integral closure of R. 

PROOF. Apply (3.5), (3.2) and (2.11). [] 

(3.7) COROLLARY. Let R be an affine graded domain over a field k, then 

Q~R.(R ) is a graded noetherian domain. 

PROOF. We know that Q ~+(R) is positively graded and that for large degrees 

d >_- do we have (Q~+(R))d = R,,  cf. (2.11) and (2.3.7). By Serre's theorem, cf. 

[15, 25], however, we know that the part of Q~+(R) of degree lower than do is a 

finitely generated R,-module, hence noetherian as well. [] 

NOTE. Under the above assumptions it does not necessarily follow that 

Q~+(R) is affine over O~.(R)o (in the sense that elements of degree 1 generate 

it); however, we know that for d large enough we have Q~+(R)u = R ~. This will 

be seen to be amply sufficient for our constructions to be possible. 

(3.8) LEMMA. If A is a cr~.-quasi Azumaya algebra, then for all P @ 
Proj(Q~+(R)) we have that QSp(A) is a graded Azumaya algebra over 

Q~(Q~+(R)). 

PROOF. Since Q~+(R) is a graded integral over R it follows that p = P f3 R is 

in Proj(R) if P ~Proj(Q~+(R)).  Indeed, it suffices to verify that if a graded 

prime ideal P of Q~+(R)= R'  contains R+ then P also contains R~.. Now, any 

x E h ( R ' )  satisfies a relation of the form x " = r , x " - ' +  . . . + r .  for some 

r~ E h(R+). So, if P contains R+, then P contains x", hence x @ P. It follows that 

P contains h(R ' )  hence R~t Now, 

Q~p(A ) = Q~(Q~+(R )) ~o~tR)Qgp(A ). 

We know that Q~(A) is a graded Azumaya algebra over Q~, hence it follows 

that Qge(A ) is a graded QSe(Q~+(R ))-Azumaya algebra, as asserted. [] 

(3.9) REMARK. The minimal prime ideals of R which are graded are all 

contained in Proj(R) - -  this holds for any positively graded ring R such that Ro 

is a domain. Consequently, the assumption that Q~(A) be an Azumaya algebra 
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over  O~(R) for all minimal and graded prime ideals of R will be fulfilled in our 

context. 

If M E R-mod,  then M * =  H o m R ( M , R )  is the dual of M and M** is the 

double dual. We say that M is reflexive if M ~-M**. 

(3.10) LEMMA. If S is a noetherian domain of global dimension at most 2 then 

every finitely generated reflexive S-module is projective. 

PROOF. Cf. [4]. []  

(3,11) LEMMA. Suppose that R is as before but also integrally closed and let A 

be a graded algebra such that O~.(A ) = A. If  for every P E Pro j (R)  we have that 
Q~(A ) is a graded Azumaya algebra over O~(R ), then A is an R -order in its total 

ring of fractions Q(A  ). 

PROOF. For each P E Pro j (R)  the localizing morphism jp : A --~ Q~(A)  is a 

central extension with kernel try(A).  Since Qge(A) is an Azumaya  algebra over  

the domain Qge(R) it is in particular a prime ring, therefore tr$(A) is a prime 

ideal of A. Since Cga.(A) = 0 = n ~r~(A) it follows that A is a semiprime ring. 

Now, let /, J be any nonzero ideals of A such that IJ = 0, then H = JI =0 

because A is semiprime. 

If je (I) were zero for all P E Proj(R ), then I C o-~.(A ) = 0 and similarly for J. 

Fix P such that jp ( I )Q~(A)~  O. Since Q~,(A) is a prime P.I. ring it follows that 

the nonzero ideal je(I)Q~(A) intersects the center Oge(R) nontriviaily. Pick 

0 ~ ze E Q~,(R ) njp (I)QSp(A), then 0 ~ Hpz~, C jp (R) n j~, (I) for some Hpf~ P 

in R. Pick some z ;, = hezp ~ 0 in Hezp and let z E I be such that jp (z)  = z ;,, then, 

from jp ( z )E je (R) ,  it follows that z = r + A for some A E ¢p(A) .  Now H~,A = 0 

for some H~,,C P yields that H'pz = H'~r C R. Since R is a domain,  we have that 

H'er# 0 and hence H;,z C I is in I n R. Consequently, nonzero ideals of A 

intersect the center nontrivially. However ,  it then follows that / J  = 0 implies 

(I O R)(J  n R )  = 0, i.e., either I or J is zero and this proves that A is a prime 

ring and all morphisms je are injective. Therefore  A is a prime P.I. algebra with 

center Z ( A ) =  R, by (2.19). From Posner 's  theorem (cf. [23]) it follows that 

Q ( A ) = A @ a Q ( R ) = A ( ~ R K  is a finite dimensional simple algebra with 

center K. We thus have the following diagram of inclusions: 

K ~ Q ( A )  

1 
O~(R ) , Q~,(A ) 
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and each O ~(A ) is a O ~(R)-order in the K central simple algebra Q(A) .  Take 

z E A, then since z E Q~,(A ), the minimal polynomial of z in O ( A  ) over K has 

coefficients in O ~(R ). The latter holds for all P E Proj(R),  hence the considered 

minimum polynomial has coefficients in 1"1 {O~(R):P  @Proj (R)}=  O~+(R). 

Since R is integrally closed here, O~+(R)= R, i.e., we have A K  = O~+(A) and 

A is integral over R and thus A is an R-order .  [] 

(3.12) COaOLLARV. (3.12.1) In the above situation A is finitely generated as an 

R-module, since any order over an integrally closed noetherian domain R in a 

central simple algebra has to be finitely generated over R, cf. [24] VI 5. 

(3.12.2) Since O~(R ) is integrally closed in K and O~,(A ) is an Azumaya  order 

over O ~(R ) in O (A ), it follows that each Q~(A ) is a maximal O~(R )-order in 

O ( A ) .  

(3.13) Now, by (3.12.1) it follows that A is finitely generated over R so we 

obtain that A * = HOMR (A, R).  Therefore A * is a graded and finitely gener- 

ated R-module.  Both A * and A ** being graded, it is not necessary to specify 

whether the dual has been taken in the graded or non-graded sense. Moreover,  

the "evaluation map" A ~ A ** : a --* ~i, where d( f )  = f ( a )  for any f E A *, is a 

graded morphism of degree zero. These remarks allow us to prove 

(3.14) LEMMA. Let A and R be as in (3.16), then A C A ** C Og(A ). 

Paoov. Suppose z = ac -~ with a E Z ( A ) =  R is in h(A**),  where A** is 

embedded in O (A)  by the classical, ungraded results. By the foregoing remarks, 

A ~ A ** is graded of degree zero, so the gradation of A ** induces the original 

one on A. Write a = a , , + . . . + a l .  with i ~ > - - . > i ,  and deg(ai~)=i,,  and 

similarly c = c;, + .  • • + c,., with j~ > . .  • > jm and deg(c;~) = j. Considering 

( c ; ,+ . - .  + c;.)z = a , ,+ . . .  + a~. in A** we obtain cj, = a , . H e n c e  z E Og(A) , so  

it follows that A * * C O ~ (A)  C O ~ (A)  since h (A **) generates A * * []  

For each ideal I of R we denote the largest graded ideal contained in I by I s. 

(3.15) LEMMA. Let P be the set of minimal prime ideals of R, let Ps = 

{P~ ; P E P}; if R is noetherian, then 

(3.15.1) P~ consists of prime ideals which are minimal and graded; 

(3.15.2) P ~  {0} unless R is a graded field. 

PaOOF. (1) Since 0 C Pg C P and Pg is prime it follows that P ~ P implies 

Pg = 0  or P8 =P-  

(2) If R is not a graded field, then there exists a nonzero homogeneous 

u ~ h (R)  which is not invertible in R. Krull's principal ideal theorem yields that 
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any prime ideal P minimal over Ru is a minimal prime ideal. From 0 ,~ Ru C Pg 

it then follows that P = P~. [] 

(3.16) LEMMA. I[ R is integrally closed and M E R-mod finitely generated 
and torsion-[ree, then M** = O p ~ M e .  

PROOF. Cf. [4]. [] 
At this point we gladly credit J. Van Geel for suggesting the use of the above 

lemma in the proof of the following proposition. 

(3.17) PROPOSITION. Let A and R be as be[ore, then A is reflexive. 

PROOF. Since A is an R-algebra it is certainly torsion-free. We already know 

A to be finitely generated, so we may apply (3.16), i.e. A ** = OeeeAe.  Since 

A** is graded, we find that A**C NeepgO~(A)= B. However, if z ~ h(B), 

then we may find a graded ideal 0 ~ It~ P for all P ~ Ps, such that Iz C A **. 
Now, if P ' ~  P - P s  then P' cannot contain the graded ideal /, for otherwise 

I C P'~C P'. Since z ~ O[A]  is thus such that Iz C A for It~ P, it follows that 

z ~ Q p . ( A ) a n d t h e l a t t e r  for P ' E P - P ~ .  So A * * C B C N e e p Q p ( A ) = A * * ,  

because B is R-generated by h(B)! Let us now establish that Z ( A  **) = Z ( A )  = 
R. First if x E Z ( A ) ,  then x E O e ¢ p Z ( Q ~ ( A ) ) C Z ( A * * ) .  Conversely, if 

y E Z ( A  **), then y commutes with every element of A in Q(A).  Therefore, 

y E ("lpevgZ(Q~(A))= NpEp, Qg(R)= R, the latter because R is known to be 

reflexive. 
For any P E Proj(R ), we have that Q ~p(A ) C Q I,(A **) and the fact that A ** is 

an R-order implies that Q~(A **) is a QI.(R)-order. The maximality of O~(A) 
yields Q ~ ( A ) =  Q~(A**) for all P ~ P r o j ( R ) .  Finally, A**C Q~ . (A**)=  

Q ~ ( A )  = A impliesA = A**. [] 

NOTE. This may also be proved directly using (2.3) in [44]. The proof given 

here involves less abstract nonsense. 

(3.18) Recall from [41] that a graded R-algebra A is said to be a pseudo- 

Azumaya algebra if it is reflexive and if the canonical map 

(A @a A opt)** __, EndR (A)  

is an isomorphism. Two pseudo-Azumaya algebras A and B are said to be 

similar if we may find reflexive R-modules P and Q and an isomorphism of 

graded R-algebras 

A @a ENDR (P) ~ B @R ENDR (Q). 

The set of similarity classes of pseudo-Azumaya algebras may be endowed with a 
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group structure in the obvious way and one thus obtains the so-called relative 
Brauer group Be(R). For more details, cf. Ioc. cit. 

We may now prove 

(3.19) THEOREM. Let X = Proj(R)  be a connected regular projective k-variety 
of dimension at most two, then there is a bijective correspondence between locally 
separable sheaves of Ox-algebras and pseudo-Azumaya algebras over F,(/~). 

PROOF. First note that for any finitely generated torsion-free graded O ~÷(R)- 

module we have M C O ~ . ( M ) C  M**, by (3.16) and the proof of (3.17), since 

O ~ ( R )  is noetherian integrally closed by (3.6) and (3.7). It follows that if M is 

reflexive it is certainly ~+-closed.  On the other hand, it also follows that if 

Q~.(M) is reflexive then Q~+(M) = M** 
Now, let L be a locally separable sheaf of Ox-algebras, then A = F . ( L )  is 

reflexive by (3.17) and we know that Q~+(AQRA°PP)=ENDR(A). But 

Q ~ ( A  ~ R A  "pp) is reflexive by (3.17), hence Q~.(A @RA °p°) = (A ~)R A"PP) **, 

proving that A is a pseudo-Azumaya algebra. 

Conversely, let us show that any pseudo-Azumaya algebra is a graded 

o-~.-quasi Azumaya algebra, then we may apply (2.28) to finish the proof. So, let 

A be pseudo-Azymaya algebra, then A is reflexive, hence finitely generated and 

torsion-free, so it is certainly ¢r~ -closed. Since F , ( / ? ) =  Q~+(R)is noetherian, 

we have that Q~(A)** = O~(A) in Q~(R)-gr, hence we may apply (2.4) to 

obtain that Q~(A), is a reflexive Q~(R),-module. But then QSe(A), is a 
projective Q ~,(R ),-module and Q ~.(A ) is graded projective over Q ~.(R ), proving 

that A is tr~-quasiprojective.  We thus have proved that A and hence 
Q*n.(A ~)RA "°p) is a trsn+-finitely generated tr~.-closed trgR.-quasiprojective 

R-module,  so we may invoke (2.3) in [44] to derive that Q*R.(A @RA ''~°) is 
reflexive, hence Q~.(A @RA"r~) = (A (~)RA°PP) ** -~ENDR(A)  and A is in- 

deed a ~r ~+-quasi-Azumaya algebra. This finishes the proof. [] 

Let us now define a morphism 

B* ( r ,  (R))-- ,  B (Proj(R) , /~)  

[L]-[C], 

then the first part of the proof of (3.19) shows that this is a well-defined group 

morphism for Proj (R)  normal. Moreover, using (2.3) in [44] one may easily 

verify 

(3.20) THEOREM. Let Proj (R)  be a connected regular projective k-variety of 

dimension at most two, then B (Proj(R ), //? ) = B g (F, (/~)). 
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REMARK. T h e  f o r e g o i n g  resu l t  g ives  a g e o m e t r i c  i n t e r p r e t a t i o n  of  t he  

r e l a t i v e  B r a u e r  g r o u p  i n t r o d u c e d  in [41], at l eas t  in the  r e g u l a r  case .  F o r  t he  

n o n - n o r m a l  case  we  r e f e r  to a p a p e r  in p r e p a r a t i o n .  
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